
HLA OBJECT MODEL
DEVELOPMENT: A

PROCESS VIEW

Mr. Robert Lutz
Johns Hopkins University Applied

Physics Laboratory
Laurel, MD

KEYWORDS
OMT, SOM, FOM, Process

ABSTRACT
One of the principle mechanisms for facilitating
interoperability between simulations and reuse of
simulation components within the High Level
Architecture (HLA) paradigm is the object model.
Federation Object Models (FOMs) are used to
define the exchange of public data among the
participants in an HLA federation. Simulation
Object Models (SOMs) are used to describe the
intrinsic capabilities that individual simulation
systems can offer to HLA federations. The HLA
Object Model Template (OMT) defines a common
structure for describing the content and format of an
HLA object model. Although the HLA OMT
specification provides a complete description of
each individual OMT component, there is little
guidance in the OMT specification regarding the
step-by-step process of HLA object model
construction. The purpose of this paper is to
suggest a generic, cookbook approach to the
development of HLA object models. The major
stages of HLA object model construction are
discussed, along with a recommended sequence of
developmental activities within each stage.

BACKGROUND

The Department of Defense (DoD) High Level
Architecture (HLA) has been developed in response
to the DoD Modeling and Simulation (M&S)
Master Plan, which calls for a DoD-wide common
technical framework which will apply to the full
range of potential M&S applications. The
objective of the HLA is to facilitate interoperability
among simulations and promote reuse of
simulations and their components.

The HLA object model is key to achieving these
stated goals of interoperability and reuse, and
represents one of the fundamental tenets upon
which the HLA has been defined. Within the HLA
paradigm, object models can take one of two forms.
An HLA Federation Object Model (FOM) provides
a specification of the exchange of public data
among all of the participants in a HLA federation.
An HLA Simulation Object Model (SOM), in
contrast, provides a specification of the intrinsic
capabilities that an individual simulation offers to
federations. SOMs are utilized in the HLA
Federation Execution Development Process
(FEDEP) as a means of determining the suitability
of individual simulations to participate in an HLA
federation.

The standard presentation format and content for
both FOMs and SOMs is provided by the HLA
Object Model Template (OMT). The categories of
information described by the OMT collectively
defines the information model which is required of
all HLA federations and federation participants.
The HLA OMT Extensions provide supplementary
categories of optional information which may
provide additional clarity and completeness in some
types of object models. A short overview
description of each OMT and OMT Extensions
component is provided below. More detailed
descriptions and graphical illustrations of table
formats are provided in the OMT and OMT
Extensions documents.

OMT COMPONENTS

 Object Class Structure Table : provides the
template for recording the namespace of all public
object classes within a given simulation or
federation domain. The structure of the template
also supports the specification of hierarchical
relationships between low-level, instantiable object
classes and their more abstract, higher-level
superclasses. The specification of a particular HLA
object class hierarchy is driven by attribute

inheritance and the subscription requirements of
federation participants.

 Object Interaction Table : provides the
template for recordation of interactions between
public object classes. An interaction is an explicit
action taken by an object, that may potentially
affect the state of another object within the
federation. Interactions are specified in HLA object
models in terms of an interaction class hierarchy,
classes of initiating and receiving objects (and their
affected attributes), and required parameters.

 Attribute/Parameter Table :
provides the template for describing and recording
the set of attributes which characterize each public
object class. In addition, this table is used to
characterize the parameters of interaction classes.
Associated with this table are two additional
subtables used to characterize user-defined
(enumerated and complex) datatypes.

 FOM/SOM Lexicon : provides a
structured format for defining all
terms (classes, interactions,
attributes, parameters, …) used in an
HLA object model.

OMT EXTENSIONS COMPONENTS
 Component Structure Table : provides the
template for recordation of “part-whole”
relationships within a simulation or federation
domain. A part-whole relation between two classes
indicates that objects from one class are parts (or
components) of composite objects from another
class. An HLA component structure is simply a set
of these part-whole (or component) relations along
with their cardinalities.

 Associations Table : provides the
template for recordation of
associations between object classes
other than part-whole relationships.
This component of a HLA object model is designed
to capture those static object relationships which
are considered necessary for assessments of
interoperability and reuse.

 Object Model Metadata : provides a means to
specify information about a federation or
simulation as a whole. Such information is
considered critical to determining the reuse potential
of a particular FOM, and is also useful for
describing the full range of applicable
characteristics of a potential federate. The format

for describing this type of information is simple
text (no explicit formatting constraints).

OM DEVELOPMENT PROCESS

Although the OMT and OMT Extensions together
fully define the format and content of an HLA
object model, neither of these documents provide
any significant user guidance on the process of
object model construction. One possible analogy
is that of a hardware systems developer being given
the detailed specifications to all of the low-level
components of a complex system, but not being
given any information as to how the individual
components can be best assembled into a working
whole. The systems developer in situations like
this will many times be able to “figure it out”,
based on experience and trial-and-error
experimentation. However, the availability of early
guidance describing a logical sequence of activities
for constructing the system (from individual
subsystem development to full system
development) is likely to result in a much more
timely and cost-efficient development process than
would be otherwise possible. Likewise, for HLA
object model developers, although all of the
components required for object model construction
are fully defined in the OMT specification, the
availability of a common process view (which
delineates the logical sequence of activities
necessary for effectively utilizing the OMT
components) would strongly facilitate efficient
object model development practices throughout the
HLA community.

The purpose of the following sections are to
describe a generalized process for construction of
both Federation and Simulation Object Models.
This process is expected to be applicable across
most HLA applications. Before proceeding, it
should be noted that this suggested sequence of
development activities is not the only process
which can lead to efficient and robust object model
construction. In fact, many deviations from this
process are possible which can lead to successful
results.

It is also important to note that there are several
classes of information which are relevant to
achieving interoperability within an HLA federation
that are not explicitly supported in the OMT.
Examples of these categories of information
includes agreements on common
databases/algorithms, specification of object
interaction sequences, and documentation of
security procedures. While recognized as

meaningful to facilitating interoperability and
reuse, such considerations are considered to be
supplemental (external) to the information provided
in an HLA object model. Nonetheless, the process
view discussed in this paper will highlight these
types of related issues whenever they are considered
to be pertinent to the object model development
process.

Throughout the discussions in this paper, the reader
will note that there is great flexibility given to
object model developers regarding the names given
to data elements in an object model. While this
accurately reflects the current guidance, it is
expected that evolving DoD-wide standards on
class/attribute/parameter naming conventions and
associated semantics will lead to significant
improvements and efficiencies in the object
modeling process. Thus, although the process
descriptions in this paper suggest significant
latitude in naming conventions, the reader should
understand that the longer-term trend is toward
standardization.

Simulation Object Model Development

In the HLA Rules, the first rule for individual
federates (Rule 6) states that all federates shall have
an HLA SOM, documented in accordance with the
HLA OMT. Thus, all simulations deemed to have
“lasting value” to a DoD agency or organization are
required to be described by a SOM as a prerequisite
to achieving HLA compliance. Besides facilitating
reuse of the simulation in future federations, SOMs
also represent an important building block in the
HLA FOM development process. Because of this
inherent dependency, this paper will focus first on
the process of SOM development.

Although it is considered possible to describe the
process of HLA FOM development in terms of a
generalized approach with broad community
applicability, a process description for HLA SOM
development is less likely to be general in nature.
The primary reason is that the various agencies of
the DoD M&S community are composed of many
different “cultures” of software engineering
practices. One aspect of these “cultures” are
established methodologies for traditional object
model development. While many of these
communities have shown themselves to be willing
to map their internal methodologies and practices to
a common process view for the purpose of
interoperating with other simulation systems, these
same communities may be less likely to abandon
established methodologies for the purpose of

simply describing their intrinsic functionalities.
Still, some general guidelines and useful advise is
possible, which can prove beneficial to SOM
developers for whatever specific development
process is chosen.

The starting point the following process description
is a simulation concept. Note that having working
software or even an existing software design is not
a prerequisite for SOM construction. In fact,
completing a SOM prior to detailed simulation
design is considered advantageous since the SOM
is, in a way, a requirements specification that
describes how the simulation will interoperate with
other simulation systems in the future. These
interoperability and reuse requirements can be
addressed from within the software design process,
and the required functionalities built directly into
the simulation rather than having to retrofit these
capabilities subsequent to implementation (a more
complex, costly, and time consuming process).
Since however a SOM is intended to provide a
specification of the current capabilities of a given
simulation system, SOMs should not be made
public until the functionality specified in the SOM
has been fully instantiated.

The following process description provides a
suggested sequence of activities for HLA SOM
development. This process should be applicable for
both new or existing simulations. An illustration
of this process is provided in Figure 1.

Step 1: Determine Publishing
 Capabil i t ies for

 Object/Interaction Classes

In this step, the classes that the simulation system
can take responsibility for publishing during an
HLA federation execution are identified. The
determination of these classes is driven by the
specific intrinsic functionalities that the simulation
sponsor/developer considers to be useful to and can
make available to future (presently unidentified)
federations. The object classes which are identified
as publishable by the simulation should generally
correspond to some real world entity (or collection
of real world entities). Each object class should be
published at the level of generalization for which it
can be instantiated within the simulation context.
For instance, some simulations may provide
explicit software representations of very specific
systems, in which case the simulation may publish
object classes like M1_TANK, F-16, or CG-47.
Other simulations may have more data driven

representations of systems, and support more
generalized object classes for publication such as
TANK, AIRCRAFT, or SHIP. Still others may
support even more generalized, instantiatable
classes such as GROUND_VEHICLES or
AIR_VEHICLES. Object classes which are
elements of an internal object class hierarchy that
are purely abstract in nature (and thus cannot be
instantiated) should not be considered publishable.

Public interaction classes are those explicit actions
which are initiated by one or more public object

class(s), that may have an affect or impact on

Determine
 Class

Subscription

Requirements

Determine
 Attrib/Param

Publishing

Capabilities

Determine
Attrib/Param

Subscription

Requirements

Prepare
 Object Class

Structure

Table

Prepare
Object

Interaction

Table

Prepare
Attribute/

Parameter

Table

Prepare
 OMT

Extensions

Tables

FOM/SOM

Lexicon

Object Class
Structure

Table

Object
Interaction

Table

Attribute/
Parameter

Table

OMT
Extensions

Tables

Process

Products

OMT Components

Figure 1 - SOM Development Process

Determine

 Class

Publishing
Capabilities

objects in different federates. The SOM developer
must consider the potential behaviors of its
publishable objects, and determine the events these
objects may generate that may be of potential
interest to other federates. Once all public
interaction classes have been determined, the object
classes which can initiate each type of interaction
should also be identified for later inclusion in the
Object Class Structure Table.

Neither object classes or interaction classes
necessarily need to map to an identifiable class
within the simulation itself. In fact, this would
not be possible for non-object-oriented simulations.
However, it is the responsibility of each simulation
to provide a software mapping between its internal
functionalities and its external public view.

SOM developers are free to name their classes
anything they prefer. The namespace of all
publishable classes should be documented in the
FOM/SOM Lexicon at the conclusion of this step.

Step 2: Determine Subscription
 Requirements

 for Object/Interaction Classes

In addition to specifying the classes of data a
simulation can export, the SOM is also intended as
a means of specifying the types of data that a
simulation may want to import from other
federates. There are two basic categories of
imported class data. First, there are those object
and/or interaction classes that a federate can reflect
in their simulation as well as publish themselves.
For instance, a simulation may be capable of
publishing aircraft objects, but may also have the
capability of reflecting instances of aircraft objects
owned by other federates. The other category of
imported class data are those object and/or
interaction classes that a federate cannot publish by
themselves, but can be reflected in the federate’s
simulated environment if other federates produce the
data. For instance, a given naval simulation may
not explicitly represent ground forces, but may be
able to shoot at ground forces reflected from other
federates if that data was made available. In
addition, all object classes which will act as
recipients of imported interactions must be
identified in this step.

As with publishable classes, the names of all
imported (subscribable) classes are at the discretion
of the SOM developer. These classes should be
identified and documented in the FOM/SOM
Lexicon.

Step 3: Determine Publishing
 Capabil i t ies for

 Attributes/Parameters

In this step, all classes identified as “publishable”
are characterized according to an identified set of
attributes or parameters. For object classes, this
entails specifying the complete set of public object
characteristics that can be explicitly supported by
the simulation, and are considered to be potentially
useful in future federations. The number (and
types) of attributes that are supported for a given
class is generally related to the degree of fidelity
provided by the underlying model.

For interaction classes, this step includes
specifying the complete set of parametric
information that can be provided by the simulation
for interactions it can initiate. It is the
responsibility of the SOM developer to anticipate
what parameters recipients of the interaction will
need to calculate the associated effects, and also to
make certain that, besides specifying this data in
the SOM, the simulation can reasonably provide
the required data.

At the conclusion of this step, all attributes and
parameters identified as publishable should be
documented in the FOM/SOM Lexicon.
Attribute/parameter names are selected by the SOM
developer.

Step 4: Determine Subscription
 Requirements

 for Attributes/Parameters

In this step, all classes identified as “subscribable”
are characterized according to an identified set of
attributes or parameters. For object classes, the
attributes identified are those which have “semantic
meaning” within the context of the simulation.
For instance, if LOCATION is the only useful
characteristic of a ground force representation
reflected by a naval simulation (perhaps because the
only meaning of a ground force entity in the naval
simulation is as a target location), then
LOCATION would be the only attribute of this
class. If this ground force could also be detected by
a radar system, then ORIENTATION and
SIGNATURE may perhaps also represent useful
attributes. Only that attribute-level information
which the simulation can make substantive use of
should be specified.

For interaction classes, this step should entail the
specification of all information that needs to be
provided with externally-initiated interactions. For

instance, subscribers of a WEAPON_DETONATE
interaction may need to know information about
the location and/or orientation of the weapon at
detonation, the type and size of the warhead, and
perhaps additional information as well depending on
how the simulation processes the occurrence of the
interaction. As with attributes, only those
interaction parameters which the simulation can
make substantive use of should be specified.

At the conclusion of this step, all attributes and
parameters identified as uniquely subscribable
should be included in the FOM/SOM Lexicon.
Attribute/parameter names are selected by the SOM
developer.

S t e p 5 : Prepare Object Class Structure
 Table

In this step, the namespace of all object classes
identified in the lexicon are mapped to a class
hierarchy in the Object Class Structure Table.
Although the subscription requirements of
individual federates tends to drive the structure of
class hierarchies at the federation level, the
subscription requirements of future federations will
be unknown at the time of SOM construction. For
SOMs, there are (at least) three viable reasons for
specifying classes other than leaf nodes in a class
hierarchy. The first reason is that some higher
level classes may themselves be publishable or
subscribable. For instance, a simulation may have
the ability to publish or subscribe to a generalized
PLATFORM class, which can be cast as a
superclass to more specific TANK, AIRCRAFT,
and SHIP classes. A second reason may be to
utilize attribute inheritance as a shorthand means of
specifying common attributes of several
publishable classes, in which case the resulting
abstract class would be designated as neither
publishable or subscribable. The third primary
reason may be to show some or all of an internal
class hierarchy, even if only the concrete classes are
publishable or subscribable. This last reason,
while permitted, tends to violate the HLA tenet that
a SOM provides only the external public view of
the simulation’s capabilities, and is therefore
discouraged.

For simulations that have no publishable or
subscribable classes beyond that at the leaf level
(no identifiable publishable or subscribable
superclasses), a completely flat class structure is
perfectly valid, and may even have advantages when
reconciling object class structures at the federation
level. It is the decision of each SOM developer as

to whether the specification of a multi-level class
hierarchy makes sense for their application.

Step 6: Prepare Object Interaction Table

In this step, the information content defined by the
Object Interaction Table is fully documented. As
with object classes, the specification of a multi-
level hierarchy of interaction classes will only be
useful in certain situations, with flat structures
being perfectly appropriate in many cases. The
identity of object classes which can serve as
recipients of published interactions or as initiators
of subscribed interactions will be unknown for
SOMs, since they are external to the simulation’s
local environment. In this case, temporary names
based on the known context of the interaction class
can and should be provided.

Step 7: Prepare Attribute/Parameter
 Table

In this step, the attributes and parameters identified
in Steps 3 and 4 are documented in the
Attribute/Parameter Table. The description of these
attributes/parameters in the table should be based
on what the simulation can currently support (for
publishable data), or on what attribute/parameter
characteristics are required (for subscribable data).
All user-defined datatypes should be fully
characterized in the Enumerated or Complex
Datatype Table.

Step 8: Prepare OMT Extensions
 Tables

 (Optional)

In this step, the components of the OMT
Extensions are considered for inclusion in the
object model. The Object Model Metadata is of
special importance for SOMs, since it provides a
means (beyond the information captured in the
OMT tables) to “advertise” the unique features and
capabilities the simulation can offer to future
federations. For instance, SOM developers may
want use the Object Model Metadata as a means to
highlight key algorithms, VV&A histories,
security characteristics, and any other information
which may be of interest to future federation
developers, but which cannot be directly captured in
the OMT tables.

The inclusion of the Associations and Component
Structure Tables should be considered whenever
explicitly specifying these types of object
relationships conveys a deeper understanding of
how the simulation is designed. For instance, the

Component Structure Table is quite useful in
engineering simulations for describing assemblies
of complex systems, and the Associations Table is
useful for representing chains of command in
applications where explicit C3 software
representations are provided. Object class references
in these tables should always correspond to an entry
in the Object Class Structure Table.

Federation Object Model Development

The starting point for the HLA FOM development
process is the Federation Development phase of the
HLA FEDEP model. Implicit to this assumption
is that the federation requirements have been clearly
delineated, the scenario(s) have been defined, the
real world objects and interactions that are to be
represented explicitly in the federation have been
determined, and the federation participants have
been both identified and fully described according to
an HLA SOM. The sequence of activities for HLA
FOM development are illustrated in Figure 2, and
are described in the following sections.

Step 1: Determine Federate
 Publishing

 Capabil i t ies and Subscription
 Needs

In this step, each federation participant maps their
SOM to the conceptual objects and interactions in
the federation to determine which classes each
individual federate is capable of publishing, and
which classes each federate will need to subscribe
to. Each federate will need to map the namespace
of their SOM classes to the naming conventions
used at the conceptual level, and determine if there
are any semantic differences which preclude
assuming responsibility for publishing certain
classes.

The output of this step is a cross-matrix for each
federate which maps individual object and
interaction classes from each federate’s SOM to the
required conceptual objects and interactions at the
federation level. Each entry in the matrix should
either be a “P” for the ability to publish, a “S” for
the need to subscribe, or “PS” for both.
Alternative formats for this data are acceptable, but
should be common across any given federation.

Step 2: Determine Federation
 Publishing

 Responsibi l i t ies

In this step, the namespace of the federation’s
object and interaction classes is determined, along
with identifying which federates will assume
responsibility for each class. One popular means
by which this may be accomplished is to arrange a
structured object model development meeting
(affectionately termed a “FOMorama”) led by a
volunteer coordinator. In this meeting, each
conceptual object/interaction is discussed one at a
time to determine which of the federates are willing
to assume publishing responsibilities for each
class, and which federates will need to subscribe to
each class. All object classes which can act as
initiators or recipients of interactions should be
identified as such. Classes for which there are no
subscribing federates can be removed from further
consideration. Agreements on the name and
semantics for each class must be negotiated among
the federates. Other relevant issues for discussion
include level of fidelity, individual object behavior,
and environmental representation.

The output of these discussions is documented via
the FOM/SOM Lexicon, which identifies the name

of each object and interaction class that is to be
supported in the federation, along with its specific

meaning. A table or matrix which captures the

Determine
 Federate

Pub/Sub
Capabilities

Specify
 Federation

Publication
Agreements

Determine
Attribute/

Parameter
Requirements

Prepare
 Object Class

Structure
Table

Prepare
Object

Interaction
Table

Prepare
Attribute/

Parameter
Table

Prepare
 OMT

Extensions
Tables

FOM/SOM
Lexicon

Object Class

Structure
Table

Object
Interaction

Table

Attribute/

Parameter
Table

OMT

Extensions
Tables

Process

Products

OMT Components

Figure 2 - FOM Development Process

federation-wide agreements on publishing
responsibilities and subscription needs should also
be prepared.

Step 3: Determine At tr ibute and
 Parameter

 Requirements

In this step, the attributes of all public object
classes and the parameters of all object interactions
are identified. To realize this, the meeting
coordinator first revisits each individual object
class, and polls the subscribers of the class as to
the specific attribute-level information that they
require. This set of information is then compared
to the set of attributes that the class publishers can
currently support. This results in one of three
possibilities per attribute:

• For attributes that have publishers but no
subscribers, that attribute is removed from
further consideration in the FOM since it does
not need to be exchanged publicly.

• For attributes that have subscribers but no
publishers, either software modifications will
need to be defined which permits the
publishing federate(s) to explicitly support the
attribute (in which case the attribute would
appear in the FOM) or the subscribing
federate(s) would need to make whatever
software modifications or other actions that are
necessary to be able to participate in the
federation without this information (in which
case the attribute would not appear in the
FOM).

• For attributes in which publisher/subscriber
matches are found, the semantics and fidelity
requirements of the attribute should be
discussed to determine if a “match” really
exists. If so, the name of the attribute (for the
purposes of the federation) should be defined.

A similar process should be followed for interaction
parameters. First, subscribers of the interaction
should dictate their requirements for interaction
parameters, based on the information required by
the federate to calculate the effects of the interaction
on the state of objects it “owns”. This is compared
to the information, in the form of parameters, that
interaction class publishers can provide. The
output of this mapping (per parameter) will result
in one of the same three possibilities shown above
for attributes, and should be handled in the same
fashion.

The output of this step should be the identification
of all attributes and parameters that are to be
supported across the federation, along with their
associated semantics. This information is
documented in the FOM/SOM Lexicon. Required
software modifications to participating federates
should also be noted for future reference.

Step 4: Prepare Object Class
 Structure Table

In this step, the namespace of public object classes
defined in the FOM/SOM Lexicon are mapped to a
class hierarchy which meets the needs of the
federation. As is stated in the HLA OMT, the two
main considerations in defining a FOM class
structure are attribute inheritance and subscription
requirements. One possible procedure for building
this class structure is to begin by forming clusters
of the real world (concrete, or instantiatable) classes
that appear to have some semantic linkages. For
instance, tanks, aircraft, and ships all represent
“things that move”, while guns and TELs represent
“things that shoot”. These clusters all offer
opportunities to define abstract classes that
represent the elements of the cluster at a more
general level. Whether or not an abstract class
should be defined for the cluster depends on 1)
whether any attribute-level information can and
should be “pushed up” to the abstract class, and 2)
whether any federate would find it useful to
subscribe to the abstract class rather than each
individual member of the cluster. In this latter
case, this would depend on whether 1) the federate
needs to know the identity (concrete class name) of
each instance of any or all classes in the cluster and
2) whether sufficient attribute-level information can
be defined at the level of the abstract class without
causing the inheritance of unnecessary information
at the level of the concrete class.

If an abstract class appears to be beneficial for a
cluster, that class should be named and fully defined
in the FOM/SOM Lexicon. Also, the attributes
that are defined for the abstract class should be
noted, and removed (if applicable) from all lower-
level classes which will inherit this information.

In a similar fashion, the abstract classes that have
been defined at this point may themselves may be
grouped into semantically similar clusters, to
determine if higher levels of abstraction are
appropriate. This “bottom-up” approach can be
used recursively to generate the structure of the
entire class hierarchy, which may have one or more
roots. Other object modeling approaches (including

top-down) may also have merit in some situations;
the actual methodology for defining the class-
subclass relationships among public object classes
is entirely at the discretion of the federation
developers.

As the final activity in this step, the class hierarchy
is fully documented in the Object Class Structure
Table, and the publish/subscribe designations are
associated with each class in the table. As is noted
in the OMT, concrete classes are always designated
as “publishable” and “subscribable”, while abstract
classes are designated as either “subscribable” or as
“neither”.

Step 5: Prepare Object Interaction Table

In this step, the information categories defined in
the Object Interaction Table are fully defined. The
first activity in this step is to map the namespace
of interaction classes defined in the FOM/SOM
Lexicon to a hierarchical structure. Here, since the
OMT specification states that inheritance of
interaction parameters is not permitted, only
federation subscription requirements need to be
considered in defining the structure. A bottom-up
approach as discussed above is suggested, but
certainly not required. Also, it is important to note
that in some situations, entirely flat structures (no
abstract classes) are considered perfectly valid. The
need to define abstract classes (for either objects or
interactions) is totally dependent on the preferences
and needs of the federation participants.

The next activity is to specify the interaction
parameters associated with each concrete interaction
class. This can be copied directly from the
FOM/SOM Lexicon as a result of activities to
define these parameters in Step 3.

The next activity is to define the initiating and
receiving classes for each concrete interaction class,
along with the specification of all attributes that
may be potentially affected by the interaction.
Publishing federates are responsible for completing
the “Initiating Object” column, while subscribing
federates should indicate the receiving objects and
affected attributes. All class and attribute names
should have existing references in the FOM/SOM
Lexicon.

The next activity is to complete the
“Init/Sense/React” column in the Object Interaction
Table. As is stated in the OMT, the designation
for each interaction should be either “Init/React” or
“Init/Sense” depending on whether at least one
federation participant can actively react to the

interaction (eg., by modifying the value of one or
more affected attribute), or whether all subscribers
of the interaction react entirely passively (eg., by
simply logging the information).

Finally, if all of the information defined in this
step has not yet been captured directly in the Object
Interaction Table, this table must now be fully
completed. It is also at this time that agreements
on object interaction sequences and trigger
conditions must be agreed to across the federation,
and documented in a suitable format. Other means
of specifying federation behavior as defined by the
federation scenario may also be applicable.

Step 6: Prepare
 Attribute/Parameter Table

In this step, all of the object attributes and
interaction parameters defined in the FOM/SOM
Lexicon must be documented in the
Attribute/Parameter Table, along with the
associated characteristics defined for the table. This
requires addressing each attribute and parameter
individually, negotiating between publishers and
subscribers relevant issues such as accuracy,
resolution, update type, and update rate (if
applicable). The results of these negotiations may
result in required software modifications, which
must be noted for later reference. Decisions on
bundling sets of attributes which must be updated
as a “package” is also done at this time.

For user-defined attribute/parameter datatypes, one
or both of the special subtables may be needed.
For complex datatypes, the same
publisher/subscriber negotiations required for
singular attributes will be required for each
individual field. For enumerated datatypes, the
enumerations themselves (and associated integer
representations) must be agreed to across the
federation.

For each attribute, the table requires that an
indication is provided as to whether the ownership
of the attribute may be transferred to another
federate during execution. If the federation requires
this for any given attribute, a description of the
ownership transfer conditions and rules should be
documented. The OMT “notes” feature is useful for
this purpose.

Finally, security considerations may require that
each attribute/parameter be designated at an
appropriate level of classification. Although this is
not currently supported by the OMT specification,

the Attribute/Parameter Table may be easily
augmented with the appropriate information.

Step 7: Prepare OMT Extensions
 Tables

 (Optional)

In this step, the components of the OMT
Extensions are considered for inclusion in the
object model. At a minimum, this should include
providing appropriate descriptive data about the
federation via the fields of the Object Model
Metadata. In addition, as with SOMs, the
Associations Table and Component Structure Table
should be considered for inclusion whenever the
associated data enhances the clarity and
understanding of the object model within the given
application. The decision as to the appropriateness
of the OMT Extensions Tables for a particular
application is at the discretion of the FOM
developers.

SUMMARY

The process descriptions provided in this paper have
been intended to provide HLA object model
developers with a baseline operational framework
for FOM or SOM development. These process
descriptions are expected to evolve and mature over
time, as developers continue to accrue experience in
this particular phase of HLA federation
development. Although not explicitly highlighted
in this paper, the DMSO-sponsored Object Model
Development Tools (OMDTs), currently in alpha
testing, will be tightly integrated into the
FOM/SOM development process in the future.

REFERENCES

All references are available for download via the
home page of the Defense Modeling and
Simulation Office, site address
http://www.dmso.mil.

[1] Under Secretary of Defense for Acquisition
and Technology, “Department of Defense Modeling
and Simulation Master Plan, DoD 5000.59-
P,” October 1995.

[2] Defense Modeling and Simulation Office,
“HLA Federation Development and Execution
Process (FEDEP) Model, Version 1.0,” 21 August
1996.

[3] Defense Modeling and Simulation Office,
“HLA Object Model Template, Version 1.0,” 21
August 1996.

[4] Defense Modeling and Simulation Office,
“HLA OMT Extensions, Version 1.0,” 21 August
1996.

[5] Defense Modeling and Simulation Office,
“HLA Rules, Version 1.0,” 15 August 1996.

[6] Lutz R., Hooks, M., Hunt K.,
“Automation in the HLA FOM Development
Process,” 15th DIS Workshop, 16-20 September
1996.

